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1. INTRODUCTION

The main purpose of this note is to study the problem to
which degree the scoring system of tennis matches allows the
difference in players' levels to be reflected in the result of
the match. To put it more explicitly, assume that Pa and Pg
are the probabilities of winning a single ball by A and by B
from their serves. Then, if the balls are played independently,
and no other factors intervene in the result, the probability of

Pa and Py s say

A winning the match is some function of
MA(pA,pB) .

The conditions of fairness require that the function MA
equals % on the diagonal Py = Pg and satisfies MA(pA,pB)
1 - MA(pB,pA) . If one wants the result to reflect the relative
advantage of one player over another, one could require the
function MA to rise steeply from % as pA increases from the
value Py - The latter requirement, while desirable from the
point of view of "true"” ranking of the players, may however cause
lack of tension and drama of a tennis match, by decreasing the amount
of randomness and uncertainty of the result.

In section 1, we consider the probability of winning a basic
unit of tennis match, namely a game, as a function of probability
of winning a ball. 1In section 2, we consider the latter probabil-
ity as*a dependent of the serving strategy, and analyse conditions
under which the usual strategy (first serve strong, second weak)

is indeed optimal. 1In section 3 we consider the simplest case of

strategic analysis, when a player may increase the probability of
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winning just one ball during the game. The question then
arises of optimal moment of the game at which such a special
ball ought to be played. This situation is then generalized

to the case of several "special" balls. Finally, in the last
section, we provide some numerical results concerning the
probability of winning the match by one player, given the
probabilities of winning a ball from his own, and from his
opponent's serve, thus providing some information relevant for
the answer $o the question formulated at the beginning of this
section. We also give some numerical results concerning the

strategy in the last two sets in the match.

2. ON THE ROLE OF TRAINING

Let us consider first the basic unit of a tennis match,
namely a game. It is characterized by the condition that the
serve belongs to one of the players throughout the whole game,
and that for winning the game, one must win four balls, with
the additional requirement that the number of balls won must
exceed the number of balls lost by at least 2. By tradition,
the first two balls won count 15 points each, the next two count
10 points each, and subsequently, the score is classified in terms
of categories "deuce", "advantage A" and "advantage B". Thus, the

game may be regarded as a walk over the graph represented on Fig. 1.
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Fig 1.

Let us consider the game from the point of view of Player A.
For the moment, let us disregard the problems connected with the
right to a double trial at serve, and assume that the balls are
played independently, each of them being won by A with probability
p, and lost by him with probability g =1 ~ p

Our first goal will be to determine the probability G(p) of

E winning the game by A , i.e. the probability that the random walk
originating at the vertex marked 0:0 will become absorbed by the
upper boundary (marked + ).

Denote by x, y and z the probabilities of winning the
game by A given the deuce (or score 30:30 ) , advantage of A ,
and advantage of B respectively (see Fig. 1).

Observe first that the probahility of an infite game is zero.

i-lﬁ-———_.“ - —




5.

Indeed, an infinite game requires that the random walk passes
through all vertices marked "deuce". Now, the probability of
passing from one "deuce" to the next is 2pg < 1 , hence the
probability of the game lasting for at least n deuces is
~(2pq)n , which tends to 0 as n - =«

Next, we have
X = py +dz , y = p +gx , z = px , (2.1)
which yields easily
x=p/0 , y=p(l-pn/Q,z=p/0, (2.2)

where Q =1 - 2pg .

From Fig. 1 it is evident that the probahilities of winning
the game by A , given the scores 40:15 and 15:40 are
p + gy and pz respectively. Proceeding in this way, we obtain

after some calculations

Proposition 1. The probability of winning the game by A is given

by the formula

4 5 6 7
15p - 34p~ + 28p - 8p . (2.3)

G(p) 5
2p” - 2p + 1

The graph of G(p) 1is given on Figure 2. As may be seen,
G(p) 1is nearly linear on a fairly large central fragment of the
interval 1!0,1. . One can find easily that G'(%) = 5/2 . This
means that for players of approximately equal strength, an increase
of probability of winning a ball from p to p + Ap vyvields an

increase of the probability of winning by about %fp . For example,
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3.

Fig. 1,

right to two trials at the serve.

to serve is A

A node of the graph on Fig.

presented on Fig.

an increase of winning probability from

vields the increase of

7.
p=0.5 to p = 0.55
G(p) by 0.123 from 0.5 to 0.623.

THE STRATEGY OF SERVING

Consider now in some more detail a node of the graph from

taking into account the fact that the players have the

Let us assume that the plaver

good
X,
1
tirst
service
fault
1-x

Now,

referred to as strong
probability of a good (no fault) serve of type i , 1 = S

ponding to a strong serve,

let Y

tvpe 1,

| R

l will therefore take the form
3.
ST
Yy  ball
won
d 'yj
., good
. 7 [ x. l
second ) l-y.
service ]
. fault ball{
J l—x7 lost

o

Fig. 3

the players may use two kinds of serve, which will be

(S) and weak (W). Let X denote the

and 1 = W - to a weak = rve.

be the probability of winning the ball from a serve of

given this serve is successful.

correcs-~

Similarly,
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The four possible strategies of serving are (SS), (SwW),
(WS) and (WW). In practice of tennis matches, the players almost
invariably use the strategy (SW). Let us therefore determine
under which conditions this strategy is indeed the hest amoung

the four possible strategies.

It is a plausible assumption that

Rg < Xy and Yo ¥ Yy (3.1)

i.e. strong serve is more often faulty than a weak one (it is
more difficult to hit the court with a strong serve); on the
other hand, the probability of winning the ball from a strong
serve is higher than from a weak one (a strong serve is more
difficult to return).

The probability of winning the ball, if one applies the

strategy (SW) equals

+ (1 - ) (3.2)

Pow = ¥g¥s ¥l ¥y¥y
and similar formulas hold for other strategies of serving.

We have therefore

Pow = Pys = 1¥g¥g + (1 = xdxpypl-Ixpy, + (1 - X )xgyg]

szw(ys - Yw) >0, (3.3)
which means that under (3.1), if one decides to use both types

of serve, it is better to start from the strong one.

Next, we have
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Pow Pgg XYy * (1 xS)xwywl Troyg (1 AS)ASYS'
(3.4)
= (= xg) (xgyy = XgYg)
We conclude therefore that if

waW > XSYS 4 (3.5)

i.e., if the absolute probability of winning with the weak serve

exceeds that of winning with the strong serve, then the strategv
(SW) is better than “he strategy (SS).
Observe that this conclusion did not require the use of

assumption (3.1)

Finally,
Pgw ~ Puw = 'Xg¥g ¥ (1 = XdIxpy b= ixpye + (1 = ) xy,.
XV Py~ %Xg) (XY — Xg¥g)
Yo *y
Xo Yy {;; - ;g Pl -~ (xw - XS) : (3.6)

and we proved

Proposition 2. Under condition (3.1), the strategy of

serving (SW) is optimal if, and only if

X Y X

W s _ *w
— 1 - (x, - x)! < = < =, (3.7)
s WS Yy  *s

4, SOME ELFMENTS OF STRATEGY IN A GAME

Consider again a game, in which A has probability p of

winning a ball. Suppose that A may increase the prohability
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p to p' > p just once during the game (e <. 11 A has a
way of distracting his oppunent's attention in playing one ball,
etc.). The problem arises when should the "spccial” ball be
played so as to maximize the probability of winning the game.
Denote by GS(p,p'} the probability of winning the game,
if the "special" bhall (with probability ' of winning it)
is played according to the strategy s
Here strateqy s 1is any rule which determines when the
special ball is to be played. If $ stands for the class of
all strategies, then S may be partitioned into two classes:
5' , say, of all strategies which will necessarily use the special
ball, and the class S" of those strategies for which this is not
true (e.g. the strategy which tells to use the special ball when
the score is 15:40 only, is in 8" : the game might end without
ever passing through the score 1%:40 ).

We shall prove a somewhat unexpectaed

Proposition 3. The game in tennis is "“strategy-less", in the

sense that

Gglpop') = G (p,p') for all s,t . & (4.1)
Cglpep') > G (p,p") for all s . S', t 5" and p' > p

Proof. We shall proceed by finding the optimal strategy of ]
placing the "special" ball, using the principle of hackward induc-

tion.

For the score wu:v during the game, denote by Pu_v the
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probability of winning the game by A , starting from the score
u:v , without ever playing the "“special" ball. Next, let P&:v
denote the probability of winning by A , starting from the score
u:v , if the first ball played is the "special" one. Similarly,
P&:V will denote the analogous probability given that the first
ball played is a "normal"” one (with probability p of success),

and from then on, the game is played in an optimal way of placing

the "special" ball. Finally,

* - ' "
pu:v max (Pu:v ' Pu:v) (4.3)

is the probability of winning the game by A under the optimal

strateqgy of placing tre special ball, in a "partial game", starting

from the score u:v

We shall try to f£ind the value PS_O . The optimal strategy

will then be determined by finding those scores wu:v at which

p* = p! > p" ., being the scores at which the "special” ball
u:v u:v u:v

must be played.

In case when P! = p" , the "special" bhall may bhe played
u:zv u:v

at u:v , or may be played later, according to optimal rules in
partial games starting from the scores next after wu:v , so that
the optimal rule is not unique.

Let us begin with scores 40:30 and 30:40 , and consider

strategies s ¢ 3' (i.e. strategies which use the "special" ball

with probability one).

We have, using (2.2)

r p(l - pq) 3
,‘ = = —_— = = —
Pan:30 =Y = T = Zpqg  * FT30:40 = 2 - (4D
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Clearly, if the special ball was not used until the score

40:30 or 30:40, it must be used at once, otherwise the strategy

would not be in S' . Thus, using (2.2) again, we have
* = ' = ' '
p40:30 P 40:30 pt*d Pdeuce (4.5)
2
- \ 1} E
= p + g T - qu
and
B
* = ' = ! = | R—
P*30:40 T F'30:40 T P Paeuce T P T 3pg (4.6)
On the other hand,
1) —_ 1 v
P30:30 T P'Pg0:30 * 9"P30:40 (4.7)
3
- ' B(l"E‘i) + ] E
b 1l - 2pg R 2pq
and
] — * *
P30:30 = PPho:30 ¥ T3040 (4.8)
2 2
- 1 1 T
plp' + ' 75555 * P I—§L§§5
We check easily that PéO:BO = P30:30 . which means that
(4.9)

* = p!
P%0:30 = P30:30

Consequently, if the special ball was not played until the
score 30:30, it may be played at this score, or it may be used at

next score, i.e. at 40:30 or 30:40, whichever occurs.

Next, we have
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40:15 P Y APyp5.39 T P+ Ay (4.10)

i

pl - pgq)
P + q f(_ 2pq )

Since at 40:15 the game may end the next ball, we have

) [ 1 E l EZSJ
| Plo:1s = Pdoa1s = Pt at B 2pq) : (4.11)

Passing now to the score 30:15, we have

Plo:1s = P'Pagi1s * 4'Pyg.gg = P'(p + ay) + g'x (4.12)
2
- P(l Pa)y 4 p°
(p +q - 2pgq 1 - 2pqg
and
P o:15 = PYap.15 * 9P3p.30 = P + a'y) + qlp'y + g'2z) (4.13)
3
= ' ¢ dae 4) 5! ﬁi. ) gt P
p{p' + ' L—————»——-Jr-—i__ S )y + qlp —~—l—9L—_ pq * TS 2pq)
Again we check easily that P! = Po , which means that at
30:15 30:15

the score 30:15 one may either use the special ball, or use it later

(at the score 40:15, and either at 30:30, or at 4n0:30 and 30:4n) .
Proceeding in the same way, we arrive finallv at the valuces
P6:0 and PS 0’ and check that they are equal.
This proves the property (4.1). The property (4.2) tollows
at once from the observation that if p' > p , then each strategy

in S" may be modified to a strategy in §' which is superior to

it. Thus, the proof of Pr  position 3 is complete.

Some tedious hut elementary calculations yield

plS'O = p3 + 3p3q + 3p2q2y + 3pq2x + pq3z (4.14)
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and

Py.1s = p4 + p3qy + 3p2qx + 3p2q22 (4.15)

with x,vy,z given by (2.2)

Using the assertion of Proposition 3, we conclude that for

all strategies s ¢ S' we have Gs(p,p') = Pé_o , hence
- ' ' L16
Gglprp') = P'Pig g * A'Pj .5 (4.16)
= Glp) + Ap(PlS:O - PO:IS)

where p' = p + 5p

Table 1 gives probabilities G(p) and differences
PlS:O - PO:lS for selected values of p , thus enabling calcula-
tion of Gs(p,p') according to (4.16). For instance, at p = 0.5

TABLE 1
P G (p) P15.0 ~ Po:is
0.00 0.0000 0.0000
0.05 0.0001 0.0012
0.10 0.0014 0.0089
0.15 0.0071 0.0278
0.20 0.0218 0.0602
0.25 0.0508 0.1055
0.30 0.0992 0.1597
0.35 0.1704 0.2160
0.40 0.2643 0.2658
0.45 0.3769 0.3002
0.50 0.5000 0.3125
0.55 0.6231 0.3002
0.60 0.7357 0.2658 ;
0.65 0.8296 0.2160 ;
0.70 0.9008 0.1597
0.75 0.9492 0.1055
0.80 0.9782 0.0602
0.85 0.9929 0.0278
0.90 0.9986 0.0089

0.95 0.9999 0.0012

R Ry
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= - P 31 . Thi
we have G(p) 0.5 and plS:O 10:15 0.31 'his means that
the increase from ¢ to p' = 0.55 (hence with  'po= 0,05) in

just one ball during the game, will increase the probability of
winning the game by about 0.0% x 0.3! = ,0155

Proposition 3 may be generulized as follows. Consider a

finite binary tree, the two branches leading out of a node marked
by 1 and 06, Assume that to each terminal node, say ¥,v,z,...
there is associated a number, say W(x), W(z),... representing

the payoff if the yame described below terminates on the respective
node.

, e he

For a given terminal node, say = , let 01,02,... n

the successive marks (1 or 0) assigned tc the cunsecutivve hranches

of the (unique} path leading to x . lLet

e(x) = /2 +02,«22+ cen boe 20 (4.17)

Assume that the payoffs W are monotone increasing with

respect to the function e , i.e, for any two terminal nodes x

and y , we have

W(ix) < W(y) whenever o(x) - e(y) . {(4.18)

Consider now a random walk on the tree under consideration,
in which consecutive steps are independent, and the branch marked
1 is chosen with probability p (and branched marked 0 is chosen

with probability q =1 - p).

The player may change the probability once during the whole
random walk, from (p,q) into (p',q') with ©p' > p . He is

to receive the reward equal to W(x) if the random walk terminates
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at node x .

Consider as betore the strategies s of choosing the
node at which the probabilities are to be modified, and let us
partition the class &  of all strategies into the set '  of
all those strategies which modify the probabilities at some node
with probabiility one, and the remainder <class &

Let VvV _ be the expectod payoff ascociatel with the strateyy

s . We have then

Proposition 4, Uidder the assumption deseraitbe? d%“”ﬁ, we have

‘ "vr.,) for all e S (4.19)
and
. ‘ \r' ' all < v, "oand ! L. 1
- (4. )
The proc: procecis an the same way as tor b tenrnis ame,

and will bhe omgptted,

Proposition 3 omay o aloo b gqener glize !t bl lewing rore than
one tall to e plavedd dn the "opecial” s fwatd hiiaher probabality
ot winningt it). Naturally, tie rusmber ot b "oy ecial” balls in
the game cannot exceed 4, 1t one conziler - only the strateries fron

' (which use all special balls with probaata ity one). In case of

4 special balls, the only strategy i1 o s to use them as the
first four bhalls played., In the interesting caces of 2 and 3 special
Lalls, one his the szme "strategy-less" uroperty of the tennis game

as «iven in Proposition 3: it does r-t matter when the special balls

are played!, as long as one gquarantees the use ot all of ther.
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G THE PRLLTS el

Let us at the cnd coneider Taraer unite of tbe one of

tennis, namely the scet and the match., The plavor who firet wins

7 oets wins the match, so that the score in oot nay he 3:0, 2:1

Nest, o o0t recpaises winnimg cox aumes, with the difdorence
ot games won and oot aeina at oo 2. Darin: the set, tio serc.
alternates Tror garce too oo, Tt e s o aadiiional provision
thet, 1t the score (T annco) 1o cotaers 00 T et el b the
tirth, the players lay ore tiche o e, 0 Jhioover wins it,
wine the ot (with tha oo ocaraed e Tih) . e rulce of tic-

Py aber are cacth vt o after ot Taret Lall, tie orve a.ternatoes

Ievidm
at overy two batile ploaved, ar cnee rast own sees Lolls, with the

Jditterence at ltoast 2.

1 These raler are hoat P ia trated on the aranl of trhe gset

4) .

(see

P,
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Suppose that A and B have probabhilities of winning a

single ball from one's own serve equal Py and Py and suppose

that A 1is to serve in the first game. The rules of the match

are then as follows.
(a) The fifth set (if played) is a random walk on the infinite

lattice from Fig. 4, with probabilities of going "up" equal alter-

~

natingly G(pA) and 1 - G(pB) , with G «agiven by (2.7). The set

is played until the random walk exits to a vertex marked + or -
(b) In the sets other than the fifth, the situation is as

above, with the additional provision that if the random walk reaches

the node 6:6, the set s completed by a tiebreaker.
o avwilan
(c) The tiebreaker is a random walk on bhe—sawme lattice from

Fig. 4, except that now the transitions occur not after a game, hut

after a single ball. The rules of changing the serve are such that

(assuming A is toserve first), Lhe successive probabilities of

the random walk going "up" are

L A R SN O

Pj\ ' 1 - pB ’ 1 - pB ’ pA ’ pA ’

)  denote the proba-

Let o = Lelppepy) and T =0 (e

bilities of winning a set with and without thc tiebrealing rule.

These probabilities do not depend on the choice of first server,

Consequently, the probability of A winning the match equals

-

R

FAN _ f3 x3 o N 2 - 2. (5.1)
MU (pyapp) = 0L+ 3L - ) 46 () O e -

Now, the probabilities :t and , » as well as the proba-

bility of winning a tiebreaker, may in principle be written down

WD o S e - e e

explicitly, as function of Pa and Pp - in much the same way as
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for the case of the gyame,

numerical

Ppy

T

ha

1
2
3

.
1

4
.

P

el

.60

.76
.17
.78
.79
.80

.85

0

.50

values,

N
.

Table

2

Probability of Winning by Player A

qame
from own

serve

(;(},;y)

0.
0.
a.
0.
0.

0.

N
0

0.
.3629
0.
0.
.B782

5250
491
5746
5990
62131

7357

L7562
.7759
L7047
.8126
0.

82046

D008

LAl2L
LA228
.24
L0410
.1349?

L9782

9564

9686
9737

.9929

2 game
from op-
ponent's
serve
1-G{(

Py

0.%000

Q0 o0 o2

Tiebreak

Table 2 provides sone interesting
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B e B O

Lh6T76
.5849

Set with I'ifth Match
tiebreak set

rule

A
"¢ i M (pA'pB)

0.535¢6 0.5369 0.5670
N.5709 0.5734 0.6321
0.605¢ N.6092 0.6934
0.6394 0.6441 0.7497
0.6721 0.6778 0.7997
0.8117 0.8202 0.9519
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As may be seen, the tiebreaker favours the weaker player
in the sense that he has higher chances of winning a tiebreaker
(and consequently, a set with tiebreaking rule) than the set
without the tiebreaker. The prohability of winning a match
appears quite sensitive to player's advantage in winning a ball,
i.e. sensitive to the difference Pp ~ Py

It may be shown easily that Proposition 3 applies as well
to a single set. Imagine namely that the player may increase
his chances of winning a number of games during the set (say,
only in games from his own serve). Then the probability of
winning the set does not depend on the choice of games which
are played with the increased probability of winning, as long
as the maximal allowed number of games is played in this way.

This property does not, however, carry over to the case of
a match. One may namely consider the situation when A can
increase the probability of winning a game (from his own serve,
say) from G(pA) to some larger value p', in total of k games
during the match. Then it is no longer irrelevant where the
games with probability p' of winning are placed.

The determination of the optimal strategy is not simple;
below, we give some numerical values for a special case.

For simplicity, assume that the increase in probability may
apply only to the games with player's own serve, while the proba-
bility of winning a game with the opponent's serve is 1 - G(pB).
Assume also that the increase does not apply to tiebreak.

If Py = 0.63 and Py = 0.60 , then G(pA) = 0.79% and

G(pB) = 0.736 , while the probability of winning the tiebreak by




A equals 0.546.

Suppose that 3 sets were already played, and A 1is to
serve in the first game of the fourth set. Assume that he can
change the probability of winning a game from G(pA) = 0.795 to
p' = 0.9 in the total of k = 4 games in the rest of the match.

If the score in sets is 2:1 , the optimal strategy (obtained
by applying the principle of backward induction, in much the same
way as the determination of optimal strategy in the proof of
Proposition 3) is to play the games with prohalility of winning
p' 1in any game in the fourth set in which A 1is either tied, or
has the advantage, except the scores (0:0 and 1:1 . Thus A
is to use the increased probability of winning at the scores 2:0,
4:0, 3:1, 2:2, 5:1, 4:2, 3:3, 5:3, 4:4 and 5:5 , that is, the
scores marked on Fig. 4 ( 2 1is to serve when the total of games
played is even). If he loses the fourth set, he is left with a
certain number x (0 < X < 4) games in which he can increase the
probability of winning. These he may play in the fifth set in any
way he chooses, provided he uses all available games.

Clearly, the optiral strategy here is aimed at winning the
match in four sets. The probability of winning the match, given
the score 2:1 in sets, in "normal situation" equals " + (1 - ﬂt)ﬂf
= 0.8429; with optimal usage of 4 "special" games it is 0.9036.

On the other hand, if the score in sets is 1:2 , then A
should use his options at all scores in the fourth set when he is
either tied, or his opponent has an advantage, except for the scores
0:0 and 1:1 . The situation is therefore symmetric, and the

optimal strategy is aimed primarily at not losing in the fourth
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set. Here the probability of winning the match in a "normal

situation equals = 0.3643 , while with optimal use of

i t'li £

four "special" games it is 0.4689.







